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A multiparametric approximation theory via certain inequalities of Jackson and
Bernstein type is developed. An approximation space is defined and it is shown that
it is actually an interpolation space among 2d Banach spaces. As applications,
direct and converse approximation theorems in function spaces with a dominant
mixed derivative are given.

INTRODUCTION

The close connection existing between classical approximation theory and
the theory of interpolation spaces is well known, The possibility of applying
interpolation techniques to approximation theory was first indicated by
Peetre [16]. In that paper Peetre gave an abstract approximation theory via
certain approximation spaces and showed that these spaces are actually
interpolation spaces. He also gave applications to the approximation of
functions in Sobolev spaces by entire functions of exponential type. Since
then, the theory of interpolation spaces has been applied in approximation
theory by several authors. (See for instance Butzer [4 J, Berg and LOfstrom
[3 J and the references quoted in these works.)

The study of interpolation spaces has hitherto been restricted mainly to
couples of Banach spaces. However, real methods of interpolation for several
Banach spaces, in the sense of Lions and Peetre 110] and Peetre 1161, have
been studied by Johnen [9J, Yoshikawa [18] and Sparr [17]. Johnen [9] not
only introduced an interpolation theory but also gave applications to approx­
imation theory. All of these authors concerned themselves with d + 1 spaces
and d parameters. On the other hand, Fernandez [5] has introduced an inter­
polation theory for 2d Banach spaces and d parameters. This approach is
useful for application to, e.g., multiparametric approximation theory.

Following Peetre [16] we shall here formulate a d-parametric approx­
imation theory in normed spaces. This will be done, as in 116], via certain
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approximation spaces which are actually interpolation spaces of 2d Banach
spaces. As applications we derive direct and converse theorems on the
approximation of functions in function spaces with a dominant mixed
derivative, by entire functions of exponential type. These theorems permit us
to recover as a consequence some results by Nikol'skii (see Nikol'skii f 13 J,
Lizorkin and Nikol'skii [121 and Amanov r I I).

I. INTERPOLATION OF 2d BANACH SPACES

We shall here give a summary of facts on the theory of interpolation of 2d

Banach spaces that shall be needed in the following. For the proofs see
Fernandez r5].

I. I. Generalities on Interpolation for 2d Banach Spaces

I. I. I. The set of k = (k] ,..., kd ) E IRd such that kj =° or 1 will be
denoted by D. We have 0 = {O, I} when d = 1, and 0 = {(O, 0), (1,0), (0, 1),
(1, I)} when d = 2. The families of objects we shall consider will depend on
indices in D.

1.1.2. We shall consider families of 2d Banach spaces IE = (Ek IkE D)
embedded, algebraically and continuously, in one and the same linear
Hausdorff space V. Such a family will be called an admissible family of
Banach spaces (in V).

1.1.3. If IE = (Ek IkE D) is an admissible family of Banach spaces, the
linear hull IIE and the intersection (lIE are defined in the usual way. They
are Banach spaces under the norms

(1)

and

(2)

The spaces (lIE and IIE are continuously embedded in V.

1.1.4. A Banach space E which satisfies

(1) (lIE c E c IIE

will be called an intermediate space (with respect to [). (Hereafter c will
denott~ a continuous embedding).
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1.2. The Intermediate Spaces (E k IkE O)l9:Q:K

1.2.1. Let IE = (E k IkE 0) be an admissible family of Banach spaces;
for x E 171E and t = (t] ,... , td) > 0 we set

( I t k k, kd)as usua = t] ... t d .

Now, assume 0 < e = (0] ,... , 0d) < I and 1~ Q= (ql '00" qd) ~ 00.

1.2.2. DEFINITION. We define (Ek IkE 0)8:Q:K to be the space of all
elements x E 171E for which

(1)

Here L ~ stands for the L Q spaces with mixed norms of Benedek and
Panzone [2] with respect to the measure d* t = dt/t = dtl/t l ... dtd/td.

1.2.3. PROPOSITION. The spaces (Ek IkE O)B:Q:K are Banach spaces
under the norms

Furthermore, the spaces (Ek IkE O)B:Q:f( are intermediate spaces with
respect to IE, i.e.,

(2) (lIE C (Ek IkE O)B:Q:K C 171E.

1.3. The Intermediate Spaces (Ek IkE O)B:Q:J

1.3.1. Let IE = (Ek IkE 0) be an admissible family of Banach spaces.
For x E rilE and t = (t l '00" td) > 0 we get

(1) J(t; x) = J(t; x; IE) = max{tk IlxllEk IkE O}.

Again, assume 0 <e = (01'00" 0d) < I and 1~ Q= (ql "00' qd) ~ 00.

1.3.2. DEFINITION. We define (Ek IkE O)s:Q:J to be the space of all
elements x E 171E for which there exists a strongly measurable function
u: IR: --t (lIE such that

(I)

and

(in 171E),

(2) t- 8 J(t; u(t)) E L~.
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1.3.3. PROPOSITION. The spaces (Ek IkE D)e;Q;J are Banach spaces

under the norms

Furthermore, the spaces (E k IkE D)e;Q;J are intermediate with respect to IE,
e.g.,

(2) nlE c (E k IkE D)s;Q;J c EIE.

We shall say the spaces (Ek IkE D)I9;Q;K and (Ek IkE D)e;Q;J are
generated by the K- and the J-methods, respectively.

1.4. The Identity between (E k IkE D)S;Q;K and (E k IkE D)s;Q;J

The following result gives a connection between the spaces generated by
the K- and the J-method, and states that these methods are actually
equivalent.

1.4.1. PROPOSITION. If O<0=(6 p ...,6d) < 1 and I~Q=(ql,.··,qd) ~oo

we have

(1)

When we have no need to specify which interpolation method has
generated the intermediate space we shall write simply (Ek IkE D)('1:Q'

1.5. The Reiteration Theorem

One of the central results in the theory of interpolation spaces is the
reiteration or stability theorem. In order to state it we need some
preliminaries.

1.5.1. DEFINITION. Let 0 < 0 = (6" ..., 6d ) < 1. We sayan intermediate
space E with respect to IE = (Ek IkE D) belongs to the class

(1)

(2)

K(0; IE) iff K(t; x; IE) ~ ete II x liE
J(0; IE) iff IlxilE ~ Ct- eJ(t; x; IE),

(x E E);

(x E nlE).

1.5.2. PROPOSITION. We have

(1)

(2)

E E K(0; IE)

E E J(0; IE)

iff E C (Ek IkE D)e;oo;K;

iff (E k IkE D)e;I;J c E.

Now we can state the reiteration theorem.
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1.5.3. PROPOSITION. Given an admissible family IE = (E k IkE D) and a

family of parameters (ek = (ot ,...,00 I k = (k 1 , ••• , kd) E D), let us consider
a family of intermediate spaces such that Fk E K(e; IE) n J(e; IE). Thus,
if 0 < e = (OJ ,..., 0d) < 1 and A = (AI'"'' Ad) is defined by Aj =
(1 - OJ)O~ + OjO{, j = 1,2,.." d, we have

(1)

1.6. The Interpolation Property

The interpolation property holds for the intermediate spaces
(Ek IkE D)e;Q'

1.6.1. PROPOSITION. Let IE = (E k IkE 0) and IF = (Fk IkE 0) be two
families of admissible Banach spaces in V and W, respectively. If T is a
linear mapping from EIE into ElF such that

(1)

we have

kED,

(2)

(Arrows will always denote bounded linear mappings.)

Remark. In view of the above result we shall hereafter call the space
(Ek IkE D)e:Q an interpolation space.

2. THE SPACES OF SOBOLEV-NIKOL'SKII AND BESov-NIKOL'SKII

2.1. The Sobolev-Nikol'skli and the Besov-Nikol'skti Spaces

We shall here recall the definition and some properties of some function
spaces introduced by Niko!'skii. (See, e.g., Niko!'skii [13], Lizorkin­
Nikol'skii [12], Amanov [11.)

Throughout this article we shall be dealing with locally summable
functions on IR d • The derivatives are always taken in the weak sense (see
Niko!'skii [14, pp. 141-151 D. As before, the spaces L P= LP(lR d) are the L P

spaces with mixed norms of Benedek and Panzone 121.

2.1.1. Let there be given a fixed multi-index M = (m l " .. , md ) E IN d and
1 :::;:; P = (PI"'" Pd) :::;:; 00. We define the Sobolev-Nikol'skii space W WP by

(1) W M.P = WM,P(lR d) = {uELPIDfruELP,a:::;:;M}.

(Recall that a = (a w " ad):::;:; M = (m w " md) iff aj :::;:; mj , j = 1,... , d.)



INTERPOLATION AND APPROXIMATION

The spaces WM
•
P are complete under the norm
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(2) IlullwM,P=lluIIM.P= L IIDauII JP •
a<M

2.1.2. For a functionffrom IR d into IR we define the mixed difference of
order M = (m] ,..., md ) E IN d by

(I) ,1~f(x)= I (_I)M-J (~)f(X+J(h))
O<J<M

md m, ( )--, .~ m - j m - j m 1= ,2- ... .L (-I) , ' ... (-I) d d •

Jd=O J,=O JI

... (7d
d

)f(X] +j(hw·,xd+jdhd)'

and the mixed moduli of continuity of order M = (m] ,... , md) E IN d by

(2) wM(t;f)=wm" ....m/tl'...,td;f)= sup 11,1~fIILP'
Ihj I <Ij

j= I ... .,d

Besides the mixed difference ,1~f and the mixed moduli of continuity
wM(t; f) we shall deal with the partial differences ,1~oM f and the partial
moduli of continuity WkoM(t;f), kED. (Hereafter we set k 0 M =
(klm p ... , kdmd)·)

Now, the Besov-Nikol'skii spaces can be introduced.

2.1.3. Let there be given S >-0 and M E IN d such that

and

1<; P = (p] ,..., Pd)' Q= (ql ,..., qd) <; 00.

We define B~.~ = B~.~(IR d) to be the space of all f E L P(IR d) such that

(I) t -k,s, t-kdSdW (t t 'f) - t-koSw (t'f) E LQ
I •.. d k,m,' .. kdmd 1''''' d' - koM , *

for all k = (k( ,..., kd ) E O.
The spaces B~~ are complete under the norm

(2)

2.2. Interpolation of the Sobolev-Nikofskii Spaces

We shall now give a characterization of the Besov-Nikol'skii spaces as
interpolation spaces among 2n Sobolev-Nikol'skii spaces. For the proofs see
Fernandez [6].

M0/38!34
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2.2.1. Iff E L P, let us set

(1) nM(t;f) = L (min tk) WkoM(t;f).
kED

2.2.2. PROPOSITION. Let K(t; f) be the interpolation functional
associated with the admissible family (WkoM .PIkE 0). Then

(1) K(t· f) ~ n (t I/M . f) = n (t l/m , t l/md• f), - M' mi' • • md 1 , ••• , d , .

2.2.3. COROLLARY. If 0 < S = (Sl ,... , Sd) < M = (m l , ... , md ) and 1 ~ P =
(PI'"'' Pd)' Q= (ql ,..., qd) ~ 00, we shall have

(1) (WkOM,P IkE O)SIM;Q;K = B~,'j"

Now, for the reiteration theorem we need the following result.

2.2.4. LEMMA. If 0 <N = (n l , ... , nd) <M = (m] ,..., md) the space WN,P
belongs to both classes K(N/M; (WkoM,P IkE 0)) and J(N/M;
(WkoM,P IkE 0)).

As a consequence of this lemma we obtain the reiteration theorem.

2.2.5. THEOREM. If 0 <N = (n l , ... , nd ) ~ M - 1 = (m] - 1,... , md - 1)
and 0 < e = (8.,..., 8d ) < 1, we have

(1) (WN+k IkE O)e:Q = (Wko MIkE O)(N+elIM;Q = BZ;pe;Q,

2.2.6. Remark. As a consequence of the reiteration theorem we see, as in
the case of the usual Besov spaces (see Peetre [15 j), that the
Besov-Nokol'skii spaces B:;,'j, do not depend on the parameter M. Thus, we
shall simply write B~,Q.

We close this section by stating the reduction theorem.

2.2.7. PROPOSITION. Let 0 < S < M and if 0 < fJ < 1 let N be such that
S = N + fJ and 0 ~ N ~ M - 1. If f E L P(IR d) the following statements are
equivalent:

(1)

(2) and

fEB S,Q-Bs,Q,
P - M,P'

D koNf E BI3,Q - BI3,Q
I,P - p , all kED.

3. A THEORY OF ApPROXIMATION IN NORMED SPACES

We shall give here a theory of approximation in normed spaces. We shall
define two approximation spaces via some inequalities of Jackson and
Bernstein type.
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3.1. The Approximation Space Ea;Q;K

3.1.1. Let E be a Banach space and let us consider a multiple scale
(WMI ME IN d) of subspaces of E, i.e.,

(1)

(2) if M'~M".

3.1.2. For every ME IN d and every x E E we introduce the best approx­
imation of x by elements of WIl1 by

(1)

It follows that

(2)

and

(3 ) if M/~M".

3.1.3. DEFINITION. Let 0 < a = (aW.,ad) ~ co and 1 ~ Q = (q!' ... , qd)
~ co. We define Ea;Q;K to be the space of all x E E such that

(1) Ilxlla;Q;K = lI(ea.
M

S'M(X))MElNdIIIQ(Ndj < co.

(Recall that a . M = a l m l + ... + admd).

The spaces Ea;Q;K are Banach spaces under the norms 3.1.3(1).
The following result follows at once.

3.1.4. PROPOSITION. If x E Ea;oo;K we have

The inequality 3.1.4(1) is an inequality of Jackson type and this permits
us to call Ea;Q;K an approximation space.

3.2. The Approximation Space Ea;Q;J

As before, let E be a Banach space and (WMIM E IN d) a multiple scale of
subspaces of E.

3.2.1. DEFINITION. Let 0 < a = (a l ,. .• , ad) < co and 1 ~ Q =
(ql ,..., qd) ~ co. We define Ea;Q;J to be the space of all x E E for which there
is a sequence (WM)MENd' with wME WM, such that

(1)
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and

(2)
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The spaces Ea;Q;J are Banach spaces under the norm

3.2.2. PROPOSITION. For all x E W~ we have

(1) I/xlla;Q;J ~ ea.M IlxlI E •

Proof It is enough to observe that x = EM' ww' with w,w = 0 if M' ot M
and wM = x if M' = M, is decomposition of x as in 3.2.1 (1).

The inequality 3.2.2(1) is an inequality of Bernstern type and, as before,
this permit us to call Ea;Q:J an approximation space.

3.3. The Embedding Ea;Q:K C Ea;Q:J

We give a first connection between the spaces Ea:Q:K and Ea;Q;J'

3.3.1. PROPOSITION. For all x E Ea;Q:K we have

Moreover,

(2)

Proof Let x E Ea:Q:K and e > O. Then, for all ME INn there is a
w~ E WM such that

Now, let us set

=0

if MotO

if M=O

(here .d k w~ stands for the multiple difference of increment k = (k J , ... , k d ),

where kED is chosen so that M = k 0 M = (k l m"..., kdmd».
We have wM E WM and since w~ ---+ x, as IMI---+ 00, it follows that

(3) I: wM = lim w~=x.
MENd IMI~oo
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On the other hand, we have

(4) IlwMIIE~ L Ilw~_k,-xIIE~ L (1 +e)~H_k'(X)
k'<,k k'<,k

Hence, from 3.3.1(3) and 3.3.1(4) we obtain

Ilxlla;Q;J ~ 2n
+ 1 Ilxlla:Q:K ,

249

as desired.
Under some additional hypotheses the inclusion of Ea;Q;K in Ea;Q;J can be

reversed. But to do that we shall need some connections between approx­
imation spaces and interpolation spaces.

3.4. Approximation Spaces and Interpolation Spaces

As before, let E be a Banach space and (WM IME IN n) a multiple scale of
subspaces of E.

3.4.1. DEFINITION. Let F be a subspace of E such that U,\I WH c F. We
shall say that

(1)

(2)

FE K(a)

FE J(a)

iff ¥H(X) ~ Ce- n
.
MIlxlIF , x E F;

iff Ilxlll ~ Ce a
.

M Ilxlb x E Ww

We shall need the following characterizations of the classes K(a) and J(a).

3.4.2. PROPOSITION. Let F be a subspace of E such that UM WH c F.
Then

(1)

(2)

and

(3)

FE K(a)

FE J(a)

FEK(a)nJ(a)

iff F c Ea;oo:K;

iff Ea : I :J cF;

Proof The equivalence 3.4.2(1) follows readily from 3.4.1 (1).
Now, if x = EM wM ' with wM E Wr.1' we have

from 3.4.1(2). Therefore Ea;I:JcF. The converse is immediate.
Now, we are ready to state the connections between interpolation spaces

and approximation spaces.
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3.4.3. PROPOSITION. Let there be given 0 < a o = (a~, ... , ag), a) =
(al ,... , a1) < 00 and 0 < e = (0) , , 0d) < 1. Consider the associated
sequence (a k = (aL ,... , a~d) Ik = (k l , , kd) EO), and set a = (a l , ... , ad)'
where aj = (1 - O)a~ + Oja{, j = 1,2, , d. Let (Fk IkE 0) be a family of
approximation subspaces of E with respect to the multiple scale
(WM IM = IN d

). Then,

(1)

(2)

(3)

if Fk E K(ak) nl(ak), k E O.

Proof Let x E (Fk IkE O)e;Q;K and x = Ekxk with x k E Fk, k EO. Since
Fk E K(ak), k EO, it follows that

g'M(X) ~ L g'M(Xk) ~ L Cke-ak'M Ilxkll Fk
kED kED

Now, taking the infimum over all the decompositions Ekxk, it follows that

g'M(X) ~ Ce- ao ·MK(e-(a,-ao)oM; x).

(4)

If we take the IQ(lN d ) norm on both sides, a standard argument yields the
embedding 3.4.3(1).

Let x E Ea;Q;J and consider a decomposition x = EM wM' with wME WM
and ME INd. Then, setting uM = w-,11 when M ~ 0 and uM = 0 elsewhere, we
have

Since F k E leak)' k EO, we have

l(e(a,-ao)oM· u )=maxe(ak-ao)·Mllw_, II. ~Ce-ao'Mllw_ II.
, ,11 k ,11 F k "'" .If 10
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If we take the IQ-norm, embedding 3.4.3(2) follows.
Finally, identities 3.4.3(3) follows at once from 3.3.1 (2), 3.4.3(1), 3.4.3(2)

and the identity between the K- and J-interpo1ation spaces. This completes
the proof.

4. ApPROXIMATION BY ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

We shall now apply the d-parametric approximation theory of Section 3 to
establish direct and converse approximation theorems by entire functions of
exponential type in functions spaces with a dominant mixed derivative. In
this way, we shall obtain some results by Nikol'skiI (see for instance
Nikol'skii [13]) as consequences of the abstract approximation theory.

4.1. The Multiple Scale of Entire Functions of Exponential Type

4.1.1. Let there be given a vector R = (r) ,..., r d ) ~ 0 with integral
components. We shall consider entire functions of exponential type ~ =
(r 1"'" rd)' i.e., entire functions such that for each given £ > 0 there exists an
M(£) > 0 for which we have

Ig(Z)1 ~ M(£) exp lj~1 (rj + £) I Zj I ~
for all Z = (z 1'"'' Zd) E Cd,

4.1.2. We take E to be L P= LP(lR d), 1 ~ P = (Pl"'" Pd) ~ 00, the L P

space with mixed norm of Benedek and Panzone [2].
The subspace WM will be defined as the space of all functions in L P that

are entire of exponential type~ 0 R = (m)r),. .. , mdrd), and will be denoted
by [MoR,P, Thus, by f E [MoR,P we shall mean that the Fourier transform J
vanishes outside the set Itjl ~ emj'j, j = 1, 2,..., d.

We see that ([MoR,P 1M E IN d
) is a multiple scale of subspaces of L P•

4.2. Characterization of the Approximation Space [L P la,Q
Let (r oR

•
p IN E IN d

) be the multiple scale introduced in 4.1.

4.2.1. PROPOSITION. The space WW",P(lR d) is of class - J(a), where
a = (a) ,... , ad) = (m,r l , ... , mdrd), i.e.,

(1) IlfllW\f,p ~ Ce
Noa Ilfllfl"
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Proof To prove that WM
•
P is of class lea) it is evidently enough to

verify the inequalities

(kE D)

for allf E roa,p. These inequalities are immediate consequences of

where f is of exponential type ';:;;1 = (1,... , 1). Indeed, iff E INo
a

•
P

, then the
function

g(x) =f(e-Noa
0 x)

is of exponential type ,;:;; 1 = (1,... , 1). Inserting this function in (3) we easily
get (2).

To prove (3), letfE II,P, so that the Fourier transform/has support in
{I tjl ,;:;; 1, j = 1,2,..., d}. Now, if lfI E C;:"'(lR d

) equals 1 in a neighborhood of
the set {! tjl ,;:;; 1, j = 1,2,... , d}, we have

A A ~

f=lfIf=Iji*f,

where Ii denotes the inverse Fourier transform of h. Hence,

and consequently

Since Dko M Iii E S(lR d ), Young's inequality yields

Finally, since lfI is taken independently of f, if we put C =
max{IIDkO M Iii IlL' IkE D} the inequality 3.1(3) follows.

4.2.2. PROPOSITION. The space WM,P (lR d
) is of class K(a; L P) where a =

(a l ,... , ad) = (m l r l , ... , mdrd), i.e.,

(1)

for all f E W M
•
P (IR d).

Proof To prove 4.2.2(1) it is enough to show that given f E WM
•
P

, there
exists w E IN 0 R.P such that

(2) Ilf - wilLI'';:;; Ce- Noa Ilfllw\fJ"
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which obviously is a consequence of

which in turn is a consequence of
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where now wE II,P.

To prove 4.2.2(1) let p be a Cc(lRd)-function that vanishes outside of the
set Itll < 1 and equals 1 in Itjl <1/2,j= 1,2,... , d. Define w by the formula

w=p!
Hence

J(t) - wet) = {l - p(t)} J(t) = {l - pet) Hit) -M (it)'H J(t),

and putting ljI(t) = {l - pet) }(it) -M we shall have

f - w= IfI * DHf,

Finally, since IfI ELI and DMf E L P, Young's inequality yields

Since IfI is fixed independently off, we take C = 1llflilL I and 4.2.1 (4) follows.
We are now ready to characterize the approximation space IL P 1"',Q'

4.2.3. PROPOSITION. Let us consider the multiple scale (p\ oR I N E IN d).
Fix M = (m l , ... , md) E INd and 0 < e = (01 "", 0d) < 1, and define a k=

I d' ,(ak!, ...,ak) by a{j=(m;+kj)rj,j= 1,2,... ,d, and k=(kw.,kd)Eo. Now,
if a=(al,· ..,ad) is given by aj=(I-e;)a~+e;a(, j=I,2,...,d, and
1 <Q = (ql ,..., qd) <00, we have

(1) [L P] = B,Hte,Qa,Q P ,

Proof Since ak= (M + k) 0 R, for all kED, we have

W~ftk,P E K(ak)n leak)'

Hence

(w/\/tk'PlkEo)e;Q= [LP!a,Q'

On the other hand, by 2.2.5( 1) we have

(WMtk,PlkCo) =BMt('J,Q
C (');Q P •

as desired.
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4.2.4. Remark. Another characterization of the spaces [LPL.,Q is given
in Fernandez [7]. Let (qJN)N be a system of test functions (see [7] or [17] for
the definition), S = (Sl ,... , Sd) E IR d

, 1 :< P = (PI'"'' Pn)' Q= (ql ,... , qn):< 00,

We set

It is shown in [7] that these spaces B~P and the spaces B~P, considered in
this article coincide when S = (sp... , Sd) > O. On the other hand, this
definition of the spaces B~P should be compared with the iterative definition
given by Sparr [17, p. 300]. Although we have no counterexample it seems
that our spaces do not coincide with Sparr' spaces. This may give rise to the
question as to whether the approximation spaces studied here may be
obtained in an iterative way. As the spaces B~P do not seem to be iterative
the same ought to be true for the abstract approximation spaces. This and
other related matters will be treated in a forthcoming paper [8], now in
preparation.

4.3. Direct and Converse Approximation Theorems

As a consequence of the foregoing results we shall state direct and
converse approximation theorems of Jackson and Bernstein type.

4.3.1. PROPOSITION (Theorem of Jackson type). If f E B~,Q then

(1) ~v(f) = O(e- NoS
)

for all N E INd.

Proof Fix N = (n( ,..., nd ), and choose M = (m l , ... , md ) and 0 < e =
(B1, ...,Bd ) such that O:<N:<M-l and S=N+ e. If we take R = (1,... ,1)
in Proposition 4.2.3, it follows that

[L PJ - BS,QS,Q - P •

Finally, by the inequality of Jackson type 3.1.4(1) it follows that

gNU):< e- NoS IlfIIBS,Q,
p

and hence the desired result.

4.3.2. PROPOSITION (Theorem of Bernstein type). Let fE LP(lR d
) such

that

(1)

Then

(2)
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Proof Let M = (m] ,..., md) and 0 <e = ((), ,..., (}d) < 1 be chosen such
that S = M + e. Then 4.3.2( 1) implies that

[LP]s,oo = (WM+k,P 1 k E D)8;00'

and thus 4.3.2(1) yields 4.3.2(2) at once.
The next two propositions generalize the preceding results,

4.3,3. PROPOSITION. Let f E B~,Q and S = (s I"'" Sd) > 1. Then, if
S = M + a with 0 < a = (a] ,..., ad) < 1, it follows that, for all kED,

(1)

Proof By the reduction theorem the hypothesis f E B~,Q implies that
f E WM,P and, for all kED, there holds

On the other hand, B~,Q = [LPla.Q, and so by the inequality of Jackson
type 3.1.4 (1) it follows that

if,lDM-kf) ~ Ce- Noa IlfI18)\""
This proves our contention.

4.3.4. PROPOSITION. Let f E L P, and if S = (s, ,... , Sd) > 1 suppose that

Then, if S = M + a with M = (m] ,..., md) E IN d and 0 < a = (a, ,..., ad) < I,
we have

(2)

and, for all kED,

(3)

Proof From 4.3.4(1) we see thatf E [LP]s,oo = B~·oo. The result follows
at once from the reduction theorem.

5. ON THE REPRESENTATION BY ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE

We close this article by showing that a theorem by Nikol'skii on the
representation of functions in B~·Q by sums of series of entire functions of
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exponential type (see Nikol'skii [13] and Amanov 11]) is also a consequence
of our J-approximation theory.

To avoid notational complications we shall restrict ourselves to the case
d = 2. Also, we shall consider the double scale {r n Im, n ~ 0 f, i.e., the
multiple scale described in 4.1.1 in the case d = 2 and with R = (1, 1).

5.0.1. PROPOSITION. If f E B~,Q, then there exists a double sequence
(wmn)m>o,n>o with wmn E Wmn , such that

(1)
co co

f= \' \' wmn (in B~·Q).---m=O n=O

Proof This follows immediately from the fact that B~,Q = [LPIS".Q:J'
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